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Revisiting our Submissions

• Certain phenomena occur over and over in CMC

• Adding in-domain training data will help to cope with them

1st approach: “Retrain” [Horbach et al. 2014, 2015]

TIGER + EmpiriST training set + “Schreibgebrauch” project training set
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• Certain phenomena occur over and over in CMC

• Adding in-domain training data will help to cope with them

1st approach: “Retrain” [Horbach et al. 2014, 2015]

Combine TIGER + EmpiriST training set + “Schreibgebrauch” project
training set (boosted 5 times)
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1st approach: “Retrain” [Horbach et al. 2014, 2015]

TIGER + EmpiriST training set + “Schreibgebrauch” project training set
(boosted 5 times)

Pros
X big performance boost

Cons
× many words still not in training data

× expensive to annotate more data

J. Prange, A. Horbach, S. Thater, Saarland University
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• unsupervised learning

• profit from large, raw in-domain data set

• assumption: words have the same POS tags as their distributional
neighbours
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• unsupervised learning

• profit from large, raw in-domain data set

• assumption: words have the same POS tags as their distributional
neighbours

2nd approach: “Distributional” [Prange et al. 2015]

for each unkown word type:

• generate known candidates based on distributional similarity

• rank POS tags of candidates

• propose highest ranked POS tag(s) to the tagger
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2nd approach: “Distributional” [Prange et al. 2015]

for each unkown word type:

• generate known candidates based on distributional similarity

• rank POS tags of candidates

• select highest ranked POS tag(s) to the tagger

Pros
X no additional manual annotation

X covers more words

Cons
× local context not considered

→ multiple readings of one word cannot be distinguished (only
indirectly via off-the-shelf tagging software)
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Revisiting our Submissions

• assumption: unknown words are often misspellings and similar to
their intended forms

3rd approach: “Surface”

for each unkown word type:

• generate candidates based on string-similarity

for each unkown word token:

• rank candidates in context by language model

• replace unknown word with highest ranked candidate
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3rd approach: “Surface”

for each unkown word type:

• generate candidates based on string-similarity

for each unkown word token:

• rank candidates in context by language model

• replace unknown word with highest ranked candidate

Pros
X no additional manual annotation

X local context considered

Cons
× very small performance boost, if any

× “overcorrection”: not only typos, but also lexical gaps are replaced

J. Prange, A. Horbach, S. Thater, Saarland University
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[% accuracy]
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Afterthoughts and Ideas for the Future

• influence of data vs influence of algorithm

• oracle experiment shows there is room for improvement with an
ideally combined system

• new particle tags are problematic – also for humans? Would it help
to re-annotate TIGER with STTS 2.0?

• action words are problematic – (morphological) preprocessing?
Tokenisation?
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Thank you!

software available under
http://www.coli.uni-saarland.de/projects/
schreibgebrauch/de/page.php?id=resources

J. Prange, A. Horbach, S. Thater, Saarland University
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